Kongzhi yu Juece/Control and Decision (ISSN:1001-0920) is a monthly peer-reviewed scopus indexed journal originally founded in 1986. It is sponsored by the Ministry of Education, china and Northeastern University, china. Kongzhi yu Juece/Control and Decision (ISSN:1001-0920) has always adhered to the correct purpose of running the journal, and has been committed to gathering and disseminating excellent academic achievements, inspiring technological innovation, and promoting the development of disciplines in my country.Aiming at major national needs and international frontiers, this journal has published a large number of original and high-level research result. The journal was selected into the "China Science and Technology Journal Excellence Action Plan Project" in December 2019.In the future, it will strive to build an open innovation, collaborative integration.
In order to clean up marine fouling attached to marine steel pile, this paper proposed an innovative configuration scheme of the marine steel pile cleaning equipment by the scraping method and its telescopic mechanism by applying a multi-cylinder synchronous control strategy to the cleaning equipment, and produced a test prototype of the cleaning equipment that could solve the problem of cleaning equipment eccentricity and tilt in the field of ocean engineering. Based on the MATLAB Simulink module, a simulation model of the operation process of the telescopic mechanism of the marine steel p
Loop closure detection is a key module for visual simultaneous localization and mapping (SLAM). Most previous methods for this module have not made full use of the information provided by images, i.e., they have only used the visual appearance or have only considered the spatial relationships of landmarks; the visual, spatial and semantic information have not been fully integrated. In this paper, a robust loop closure detection approach integrating visual–spatial–semantic information is proposed by employing topological graphs and convolutional neural network (CNN) features. Fir
A global path planning method is proposed based on improved ant colony optimization according to the slow convergence speed in mobile service robot path planning. The distribution of initial pheromone is determined by the critical obstacle influence factor. The influence factor is introduced into the heuristic information to improve the convergence speed of the algorithm at an early stage. A new pheromone update rule is presented using fuzzy control to change the value of pheromone heuristic factor and expectation heuristic factor, adjusting the evaporation rate in stages. The method achiev
The visual navigation system is an important module in intelligent unmanned aerial vehicle (UAV) systems as it helps to guide them autonomously by tracking visual targets. In recent years, tracking algorithms based on Siamese networks have demonstrated outstanding performance. However, their application to UAV systems has been challenging due to the limited resources available in such systems. This paper proposes a simple and efficient tracking network called the Siamese Pruned ResNet Attention (SiamPRA) network and applied to embedded platforms that can be deployed on UAVs. SiamPRA is base
For many practical systems that are required to perform critical tasks, it is commonly observed that tasks can be performed multiple times within a limited time to improve task success probability. Such property is referred to as time redundancy. This paper contributes by studying the optimal adaptive maintenance and the task abort strategies of continuously degraded systems considering two kinds of time redundancy to improve system safety and task reliability. The task abort decision is considered dynamically according to the degradation level and the number of task attempts. Task success