Kongzhi yu Juece/Control and Decision

Kongzhi yu Juece/Control and Decision (ISSN:1001-0920) is a monthly peer-reviewed scopus indexed journal originally founded in 1986. It is sponsored by the Ministry of Education, china and Northeastern University, china. Kongzhi yu Juece/Control and Decision (ISSN:1001-0920) has always adhered to the correct purpose of running the journal, and has been committed to gathering and disseminating excellent academic achievements, inspiring technological innovation, and promoting the development of disciplines in my country.Aiming at major national needs and international frontiers, this journal has published a large number of original and high-level research result. The journal was selected into the "China Science and Technology Journal Excellence Action Plan Project" in December 2019.In the future, it will strive to build an open innovation, collaborative integration.

Aim and Scope

Kongzhi yu Juece/Control and Decision

Computer Science and Engineering: Lizi Jiaohuan Yu Xifu/Ion Exchange and Adsorption Fa yi xue za zhi Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology Research Journal of Chemistry and Environment

Software Engineering, Data Security, Computer Vision, Image Processing, Cryptography, Computer Networking, Database system and Management, Data mining, Big Data, Robotics, Parallel and distributed processing, Artificial Intelligence, Natural language processing , Neural Networking, Distributed Systems , Fuzzy logic, Advance programming, Machine learning, Internet & the Web, Information Technology, Computer architecture, Virtual vision and virtual simulations, Operating systems, Cryptosystems and data compression, Security and privacy, Algorithms, Sensors and ad-hoc networks, Graph theory, Pattern/image recognition, Neural networks,

Electrical Engineering and Telecommunication Section:

Electrical Engineering, FACTS devices , Insulation systems , Power quality , Telecommunication Engineering, Electro-mechanical System Engineering, Biological Biosystem Engineering, Integrated Engineering, Electronic Engineering, Hardware-software co-design and interfacing, Semiconductor chip, Peripheral equipments, Nanotechnology, Advanced control theories and applications, Machine design and optimization , Turbines micro-turbines, High voltage engineering, Electrical actuators , Energy optimization , Electric drives , Electrical machines, HVDC transmission, Power electronics.

Mechanical and Materials Engineering :

kinematics and dynamics of rigid bodies, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, mechanics of continuum, strength of materials, fatigue of materials, hydromechanics, aerodynamics, thermodynamics, heat transfer, thermo fluids, nanofluids, energy systems, renewable and alternative energy, engine, fuels,

Chemical Engineering :

Chemical engineering fundamentals, Particulate systems, Rheology, Physical, Theoretical and Computational Chemistry, Chemical engineering educational challenges and development, Chemical reaction engineering, Multifase flows, Chemical engineering equipment design and process design, Thermodynamics, Catalysis & reaction engineering, Interfacial & colloidal phenomena, Transport phenomena in porous/granular media, Membranes and membrane science, Crystallization, distillation, absorption and extraction, Ionic liquids/electrolyte solutions.

Mathematics :

Actuarial science, Algebra, Algebraic geometry, Analysis and advanced calculus, Approximation theory, Boundry layer theory, Calculus of variations, Combinatorics, Complex analysis, Continuum mechanics, Cryptography, Demography, Differential equations, Differential geometry, Dynamical systems, Econometrics, Fluid mechanics, Functional analysis, Game theory, General topology, Geometry, Graph theory, Group theory, Information theory, Industrial mathematics, Integral transforms and integral equations, Lie algebras, Magnetohydrodynamics, Mathematical analysis, Logic,

Physics Section :

Astrophysics, Atomic and molecular physics, Biophysics, Chemical physics, Civil engineering physics, Cluster physics, Computational physics, Condensed matter, Cosmology, Device physics, Fluid dynamics, Geophysics. High energy particle physics, Laser, Mechanical engineering, Medical physic, Nanotechnology, Nonlinear science, Nuclear physics, Optics, Photonics, Plasma and fluid physics, Quantum physics, Magnetohydrodynamics, Robotics, Soft matter and polymers,

// Latest Journals

Parameter optimization of BP neural network based on coyote optimization algorithm with inverse time chaotic

A chaotic coyote optimization algorithm based on inverse time-decay operator(ICCOA) is proposed to solve the coyote optimization algorithm(COA), such as the poor performance and low diversity. Firstly, the inverse time decay weight factor is added in the process of individual iterative updating, so as to maintain the balance between global search and local development ability and improve the search speed of the algorithm. Secondly, add the chaotic interference mechanism based on Tent chaotic map, some poor individuals in the population were mapped to produce new individuals, thus increasing

A survey of cooperative optimization of traffic-grid networks in the era of electric vehicles

By integrating renewable energy sources (RESs) with electric vehicles (EVs) in microgrids, we are able to reduce carbon emissions as well as alleviate the dependence on fossil fuels. In order to improve the economy of an integrated system and fully exploit the potentiality of EVs’ mobile energy storage while achieving a reasonable configuration of RESs, a cooperative optimization method is proposed to cooperatively optimize the economic dispatching and capacity allocation of both RESs and EVs in the context of a regional multi-microgrid system. An across-time-and-space energy transmis

Ensemble set controllability of Boolean control networks

In this paper, we investigate the ensemble controllability and reachability for a family of Boolean control networks (BCNs). First, BCNs are converted to discrete-time linear dynamics by the semi-tensor product. Then the ensemble controllability of BCNs is studied via a free control sequence and input Boolean network, respectively. Some necessary and sufficient conditions are obtained to judge the ensemble controllability. The existence of the input Boolean network for the ensemble controllability is also discussed. When there are unknown inputs in BCNs, necessary and sufficient conditions

A broad learning system based on reservoir computing

Reservoir computing is a computational framework suited for temporal/sequential data processing. It is derived from several recurrent neural network models, including echo state networks and liquid state machines. A reservoir computing system consists of a reservoir for mapping inputs into a high-dimensional space and a readout for pattern analysis from the high-dimensional states in the reservoir. The reservoir is fixed and only the readout is trained with a simple method such as linear regression and classification. Thus, the major advantage of reservoir computing compared to other recurr

Exact dynamic programming algorithm for green single machine scheduling problem

This paper proposes an efficient exact algorithm for the general single-machine scheduling problem where machine idle time is permitted. The algorithm is an extension of the authors’ previous algorithm for the problem without machine idle time, which is based on the SSDP (Successive Sublimation Dynamic Programming) method. We first extend our previous algorithm to the problem with machine idle time and next propose several improvements. Then, the proposed algorithm is applied to four types of single-machine scheduling problems: the total weighted earliness-tardiness problem with equal