Kongzhi yu Juece/Control and Decision

Kongzhi yu Juece/Control and Decision (ISSN:1001-0920) is a monthly peer-reviewed scopus indexed journal originally founded in 1986. It is sponsored by the Ministry of Education, china and Northeastern University, china. Kongzhi yu Juece/Control and Decision (ISSN:1001-0920) has always adhered to the correct purpose of running the journal, and has been committed to gathering and disseminating excellent academic achievements, inspiring technological innovation, and promoting the development of disciplines in my country.Aiming at major national needs and international frontiers, this journal has published a large number of original and high-level research result. The journal was selected into the "China Science and Technology Journal Excellence Action Plan Project" in December 2019.In the future, it will strive to build an open innovation, collaborative integration.

Aim and Scope

Kongzhi yu Juece/Control and Decision

Computer Science and Engineering:

Software Engineering, Data Security, Computer Vision, Image Processing, Cryptography, Computer Networking, Database system and Management, Data mining, Big Data, Robotics, Parallel and distributed processing, Artificial Intelligence, Natural language processing , Neural Networking, Distributed Systems , Fuzzy logic, Advance programming, Machine learning, Internet & the Web, Information Technology, Computer architecture, Virtual vision and virtual simulations, Operating systems, Cryptosystems and data compression, Security and privacy, Algorithms, Sensors and ad-hoc networks, Graph theory, Pattern/image recognition, Neural networks,

Electrical Engineering and Telecommunication Section:

Electrical Engineering, FACTS devices , Insulation systems , Power quality , Telecommunication Engineering, Electro-mechanical System Engineering, Biological Biosystem Engineering, Integrated Engineering, Electronic Engineering, Hardware-software co-design and interfacing, Semiconductor chip, Peripheral equipments, Nanotechnology, Advanced control theories and applications, Machine design and optimization , Turbines micro-turbines, High voltage engineering, Electrical actuators , Energy optimization , Electric drives , Electrical machines, HVDC transmission, Power electronics.

Mechanical and Materials Engineering :

kinematics and dynamics of rigid bodies, theory of machines and mechanisms, vibration and balancing of machine parts, stability of mechanical systems, mechanics of continuum, strength of materials, fatigue of materials, hydromechanics, aerodynamics, thermodynamics, heat transfer, thermo fluids, nanofluids, energy systems, renewable and alternative energy, engine, fuels,

Chemical Engineering :

Chemical engineering fundamentals, Particulate systems, Rheology, Physical, Theoretical and Computational Chemistry, Chemical engineering educational challenges and development, Chemical reaction engineering, Multifase flows, Chemical engineering equipment design and process design, Thermodynamics, Catalysis & reaction engineering, Interfacial & colloidal phenomena, Transport phenomena in porous/granular media, Membranes and membrane science, Crystallization, distillation, absorption and extraction, Ionic liquids/electrolyte solutions.

Mathematics :

Actuarial science, Algebra, Algebraic geometry, Analysis and advanced calculus, Approximation theory, Boundry layer theory, Calculus of variations, Combinatorics, Complex analysis, Continuum mechanics, Cryptography, Demography, Differential equations, Differential geometry, Dynamical systems, Econometrics, Fluid mechanics, Functional analysis, Game theory, General topology, Geometry, Graph theory, Group theory, Information theory, Industrial mathematics, Integral transforms and integral equations, Lie algebras, Magnetohydrodynamics, Mathematical analysis, Logic,

Physics Section :

Astrophysics, Atomic and molecular physics, Biophysics, Chemical physics, Civil engineering physics, Cluster physics, Computational physics, Condensed matter, Cosmology, Device physics, Fluid dynamics, Geophysics. High energy particle physics, Laser, Mechanical engineering, Medical physic, Nanotechnology, Nonlinear science, Nuclear physics, Optics, Photonics, Plasma and fluid physics, Quantum physics, Magnetohydrodynamics, Robotics, Soft matter and polymers,

// Latest Journals

Semi-supervised deep learning model based on u-wordMixup

An effective way to improve the performance of deep neural networks in most computer vision tasks is to improve the quantity of labeled data and the quality of labels. However, in the analysis and processing of medical images, high-quality annotation depends on the experience and professional knowledge of experts, which makes it very difficult to obtain a large number of high-quality annotations. Therefore, we propose a new semi-supervised framework for medical image classification. It combines semi-supervised classification with unsupervised deep clustering. Spreading label information to


Survey of lane detection for autonomous robots in semi-structured scenarios

In the context of autonomous vehicles on highways, one of the first and most important tasks is to localize the vehicle on the road. For this purpose, the vehicle needs to be able to take into account the information from several sensors and fuse them with data coming from road maps. The localization problem on highways can be distilled into three main components. The first one consists of inferring on which road the vehicle is currently traveling. Indeed, Global Navigation Satellite Systems are not precise enough to deduce this information by themselves, and thus a filtering step is needed


Robust optimization method for steelmaking-continuous casting scheduling with uncertain processing times

The following paper proposes a study about the existing solutions for dealing with uncertainty while solving the planning and scheduling problem at steel industry manufacturing processes. The different techniques designed to cope with uncertainty in manufacturing scheduling are discussed, along with the main uncertainty factors affecting the scheduling. The paper proposes a classification for the main uncertainties affecting the steelmaking process and analyzes the existing literature about solutions for the scheduling with uncertainty in the steel sector in terms of approaches followed and


Adaptive synthetic sampling of imbalanced data based on variation Bayesian-optimized Gaussian mixture model

Synthetic data consists of artificially generated data. When data are scarce, or of poor quality, synthetic data can be used, for example, to improve the performance of machine learning models. Generative adversarial networks (GANs) are a state-of-the-art deep generative models that can generate novel synthetic samples that follow the underlying data distribution of the original dataset. Reviews on synthetic data generation and on GANs have already been written. However, none in the relevant literature, to the best of our knowledge, has explicitly combined these two topics. This survey aims


Damping accumulated discrete GM (1,1) model and its application

Population, resources and environment constitute an interacting and interdependent whole. Only by scientifically forecasting and accurately grasping future population trends can we use limited resources to promote the sustainable development of society. Because the population system is affected by many complex factors and the structural relations among these factors are complex, it can be regarded as a typical dynamic grey system. This paper introduces the damping accumulated operator to construct the grey population prediction model based on the nonlinear grey Bernoulli model in order to d